My first research paper concerns the modeling of an evacuation through a bottleneck with a computationally light cellular automaton (CA) model. In it, the evacuating crowd is modeled as a multi-agent system, and the agents move in a discrete square grid according to probabilistic rules. Their decision-making is modeled with a game-theoretical model. The game is played locally and the strategy choice affects the movement of the agents.
The model from (von Schantz & Ehtamo, 2014) is extended to include agents with different risk perceptions. In the numerical simulations with the model we show that agents evacute in irregular successions. The more threatening they perceive the situation, the longer the time lapse on average between two consecutively evacuated agents is.